ai-one’s Biologically Inspired Neural Network

February 1st, 2015

ai-one’s Learning Algorithm: Biologically Inspired Neural Network
– Introduction to HSDS vs ANN in Text Applications

Unlike any of the traditional neural nets, the neural network based on ai-one, the HoloSemantic Data Space neural network (invented by Manfred Hoffleisch) or in short “HSDS”, are massively connected, asymmetrical graphs which are stimulated by binary spikes. HSDS do not have any neural structures pre-defined by the user. Their building blocks resemble biological neural networks: a neuron has dendrites, on which the synapses from other neurons are placed, and an axon which ends in synapses at other neurons.

The connections between the neurons emerge in an unsupervised manner while the learning input is translated into the neural graph structure. The resulting graph can be queried by means of specific stimulations of neurons. In traditional neural systems it is necessary to set up the appropriate network structure at the beginning according to what is to be learned. Moreover, the supervised learning employed by neural nets such as the perceptron requires that a teacher be present who answers specific questions. Even neural nets that employ unsupervised learning (like those of Hopfield and Kohonen) require a neighborhood function adapted to the learning issue. In contrast, HSDS require neither a teacher nor a predefined structure or neighborhood function (note that although a teacher is not required, in most applications programmatic teaching is used to insure the HSDS has learned the content needed to meet performance requirements). In the following we characterize HSDS according to their most prominent features.

Exploitation of context

In ai-one applications like BrainDocs, HSDS is used for the learning of associative networks and feature extraction. The learning input consists of documents from the application domains, which are broken down into segments rather than entered whole: all sentences may be submitted as is or segmented into sub-sentences according to grammatical markers. By way of experimenting, we have discovered that a segment should ideally consist of 7 to 8 words. This is in line with findings from cognitive psychology. Breaking down text documents into sub-sentences is the closest possible approximation to the ideal segment size. The contexts given by the sub-sentence segments help the system learn. The transitivity of term co-occurrences from the various input contexts (i.e. segments) are a crucial contribution to creating appropriate associations. This can be compared with the higher-order co-occurrences explored in the context of latent semantic indexing.

Continuously evolving structure
The neural structure of a HSDS is dynamic and changes constantly in line with neural operations. In the neural context, change means that new neurons are produced or destroyed and connections reinforced or inhibited. Connections that are not used in the processing of input into the net for some time will get gradually weaker. This effect can also be applied to querying, which then results in the weakening of connections that are rarely traversed for answering a query.

Asymmetric connections
The connections between the neurons need not be equally strong on both sides and it is not necessary that a connection should exist between all the neurons (cp. Hopfield’s correlation matrix).

Spiking neurons
The HSDS is stimulated by spikes, i.e. binary signals which either fire or do not. Thresholds do not play a role in HSDS. The stimulus directed at a neuron is coded by the sequence of spikes that arrive at the dendrite.

Massive connectivity
Whenever a new input document is processed, new (groups of) neurons are created which in turn stimulate the network by sending out a spike. Some of the neurons reached by the stimulus react and develop new connections, whereas others, which are less strongly connected, do not. The latter nevertheless contribute to the overall connectivity because they make it possible to reach neurons which could not otherwise be reached. Given the high degree of connectivity, a spike can pass through a neuron several times since it can be reached via several paths. The frequency and the chronological sequence in which this happens determine the information that is read from the net

General purpose
There is no need to define a topology before starting the learning process because the neural structure of the HSDS develops on its own. This is why it is possible to retrieve a wide range of information by means of different stimulation patterns. For example, direct associations or association chains between words can be found, the words most strongly associated with a particular word can be identified, etc.

Rumsfeld Conundrum- Finding the Unknown Unknown

January 27th, 2015

Since we began the process of building applications using our AI engine, we have been focused on working with ideas or concepts. With BrainDocs we built intelligent agents to find and score similarity for ideas in paragraphs, but still fell short of the vision we have for our solution. Missing was an intuitive and visual UI to explore content interactively using multiple concepts and  metadata (like dates, locations, etc). We want to give our users the power to create a rich and personal context to power through their research. What do I call this?

Some Google research led me to a great visualization and blog by David McCandless on the Taxonomy of Ideas. While the words in his viz are attributes of ideas, not the ideas themselves, it got me thinking in different ways about the problem.

Taxonomy of Ideas

If you substitute an idea (product or problem) in David’s matrix and add the dimension of time, you create a useful framework. If the idea above was “car”, then the top right might be Tesla and bottom left a Yugo (remember those?). Narrow the definition to “electric car” or generalize to “eco-friendly personal transportation” and the matrix changes. But insert an unsolved problem and now you have trouble applying the attributes. You also arrive at an innovator’s dilemma (not the seminal book by Clayton Christensen), the challenge of researching something that hasn’t been labeled and categorized yet.

Ideas begin in someone’s head. With research, debate, and engineering, they become products. Products have labels and categories that facilitate communication, search and commerce. The challenge for idea search on future problems is that the opposite occurs: products are not yet ideas and the problems they solve may not have been defined yet. If I may, Donald Rumsfeld nailed the problem with this famous quote:

“There are known knowns. These are things we know that we know. There are known unknowns. That is to say, there are things that we know we don’t know. But there are also unknown unknowns. There are things we don’t know we don’t know.”

And if it’s an unknown unknown, it certainly hasn’t been labeled yet so how do you search for it? Our CEO Walt Diggelmann used to say it this way, “ai-one gives you an answer to a question, you did not know that you have to ask….!

Innovators work in this whitespace.

If you could build and combine different intelligent (idea) agents for problems as easily as you test different combinations of words in a search box, you could drive an interactive and spontaneous exploration of ideas. In some ways this is the gift of our intelligence. New ideas and innovation are in great part combinatorial, collaborative and stimulated by bringing together seemingly unrelated knowledge to find new solutions.

Instead of pumping everything into your brain (or an AI) and hoping the ideas pop out, we want to give you the ability to mix combinations of brains, add goals and constraints and see what you can create. Matt Ridley termed this “ideas having sex”. This is our goal for Topic-Mapper (not the sex part).

So what better place to apply this approach than to the exploration of space? NASA already created a “taxonomy of ideas” for the missions of the next few decades. In my next blog I’ll describe the demo we’re working on for the grandest of the grand challenges, human space exploration.


AI, AGI, ASI, Deep Learning, Intelligent Machines.. Should you worry?

January 17th, 2015

If the real life Tony Stark and technology golden boy, Elon Musk, is worried that AI is an existential threat to humanity, are we doomed? Can mere mortals do anything about this when the issue is cloaked in dozens of buzzwords and the primary voices on the subject are evangelists with 180 IQs from Singularity University? Fortunately, you can get smart and challenge them without a degree in AI from MIT.

There are good books on the subject. I like James Barrat’s Our Final Invention and while alarmist, it is thorough and provides a guide to a number of resources from both sides of the argument. One of those was the Machine Intelligence Research Institute (MIRI) founded by Eliezer Yudkowsky. This book was recommended on the MIRI website and is a good primer on the subject.

Smarter Than Us by Stuart ArmstrongSmarter Than Us – The Rise of Machine Intelligence by Stuart Armstrong can also be downloaded at iTunes.

“It will sharpen your focus to see AI from a different view. The book does not provide a manual for Friendly AI, but its shows the problems and it points to the 3 critical things needed. We are evaluating the best way for ai-one to participate in the years ahead.” Walt Diggelmann, CEO ai-one.

In Chapter 11 Armstrong recommends we take an active role in the future development and deployment of AI, AGI and ASI. The developments are coming; the challenge is to make sure AI plays a positive role for everyone. A short summary:

“That’s Where You Come In . . .

There are three things needed—three little things that will make an AI future bright and full of meaning and joy, rather than dark, dismal, and empty. They are research, funds, and awareness.

Research is the most obvious.
A tremendous amount of good research has been accomplished by a very small number of people over the course of the last few years—but so much more remains to be done. And every step we take toward safe AI highlights just how long the road will be and how much more we need to know, to analyze, to test, and to implement.

Moreover, it’s a race. Plans for safe AI must be developed before the first dangerous AI is created.
The software industry is worth many billions of dollars, and much effort (and government/defense money) is being devoted to new AI technologies. Plans to slow down this rate of development seem unrealistic. So we have to race toward the distant destination of safe AI and get there fast, outrunning the progress of the computer industry.

Funds are the magical ingredient that will make all of this needed research.
In applied philosophy, ethics, AI itself, and implementing all these results—a reality. Consider donating to the Machine Intelligence Research Institute (MIRI), the Future of Humanity Institute (FHI), or the Center for the Study of Existential Risk (CSER). These organizations are focused on the right research problems. Additional researchers are ready for hire. Projects are sitting on the drawing board. All they lack is the necessary funding. How long can we afford to postpone these research efforts before time runs out? “

About Stuart: “After a misspent youth doing mathematical and medical research, Stuart Armstrong was blown away by the idea that people would actually pay him to work on the most important problems facing humanity. He hasn’t looked back since, and has been focusing mainly on existential risk, anthropic probability, AI, decision theory, moral uncertainty, and long-term space exploration. He also walks the dog a lot, and was recently involved in the coproduction of the strange intelligent agent that is a human baby.”

Since ai-one is a part of this industry and one of the many companies moving the field forward, there will be many more posts on the different issues confronting AI. We will try to keep you updated and hope you’ll join the conversation on Google+, Facebook, Twitter or LinkedIn. AI is already pervasive and developments toward AGI can be a force for tremendous good. Do we think you should worry? Yes, we think it’s better to lose some sleep now so we don’t lose more than that later.


(originally posted on

ai-one and the Machine Intelligence Landscape

January 12th, 2015

In the sensationally titled Forbes post, Tech 2015: Deep Learning And Machine Intelligence Will Eat The World, author Anthony Wing Kosner surveys the impact of deep learning technology in 2015. This is nothing new for those in the field of AI. His post reflects the recent increase in coverage artificial intelligence (AI) technologies and companies are getting in business and mainstream media. As a core technology vendor in AI for over ten years, it’s a welcome change in perspective and attitude.

We are pleased to see ai-one correctly positioned as a core technology vendor in the Machine Intelligence Landscape chart featured in the article. The chart, created by Shivon Zilis, investor at BloombergBETA, is well done and should be incorporated into the research of anyone seriously tracking this space.

Especially significant is Zilis’ focus on “companies that will change the world of work” since these are companies applying AI technologies to innovation and productivity challenges across the public and private sectors. The resulting solutions will provide real value through the combination of domain expertise (experts and data) and innovative application development.

This investment thesis is supported by the work of Erik Brynjolfsson and Andrew McAfee in their book “The Second Machine Age”, a thorough discussion of value creation (and disruption) by the forces of innovation that is digital, exponential and combinatorial. The impact of these technologies will change the economics of every industry over years if not decades to come. Progress and returns will be uneven in their impact on industry, regional and demographic sectors. While deep learning is early in Gartner’s Hype Cycle, it is clear that the market value of machine learning companies and data science talent are climbing fast.

This need for data scientists is growing but the business impact of AI may be limited in the near future by the lack of traditional developers who can apply them. Jeff Hawkins of Numenta has spoken out on this issue and we agree. It is a fundamentally different way to create an application for “ordinary humans” and until the “killer app” Hawkin’s speaks about is created, it will be hard to attract enough developers to invest time learning new AI tools. As the chart shows, there are many technologies competing for their time. Developers can’t build applications with buzzwords and one size fits all APIs or collections of open source algorithms. Technology vendors have a lot of work to do in this respect.

Returning to Kosner’s post, what exactly is deep learning and how is it different from machine learning/artificial intelligence? According to Wikipedia,

Deep learning is a class of machine learning training algorithms that use many layers of nonlinear processing units for feature extraction and transformation. The algorithms may be supervised or unsupervised and applications include pattern recognition and statistical classification.

  • are based on the (unsupervised) learning of multiple levels of features or representations of the data. Higher level features are derived from lower level features to form a hierarchical representation.
  • are part of the broader machine learning field of learning representations of data.
  • learn multiple levels of representations that correspond to different levels of abstraction; the levels form a hierarchy of concepts.
  • form a new field with the goal of moving toward artificial intelligence. The different levels of representation help make sense of data such as images, sounds and texts.

These definitions have in common (1) multiple layers of nonlinear processing units and (2) the supervised or unsupervised learning of feature representations in each layer, with the layers forming a hierarchy from low-level to high-level features.

While in the 4th bullet this is termed a new field moving toward artificial intelligence, it is generally considered to be part of the larger field of AI already. Deep learning and machine intelligence is not the same as human intelligence. Artificial intelligence in this definition above and in the popular press usually refers to Artificial General Intelligence (AGI). AGI and the next evolution, Artificial Super Intelligence (ASI) are the forms of AI that Stephen Hawking and Elon Musk are worried about.

This is powerful stuff no question, but as an investor, user or application developer in 2015 look for the right combination of technology, data, domain expertise, and application talent applied to a compelling (valuable) problem in order to create a disruptive innovation (value). This is where the money is over the new five years and this is our focus at ai-one.


Analytics In M&A – Avoid Overpaying for Revenue

November 5th, 2014

“New, fast, desktop analytics tools enable CEOs to measure top line impact of acquisitions during due diligence, avoiding revenue misses and integration problems after closing.  We can now complete the analysis and publish a dashboard to a CEO’s desktop during due diligence while there is still time to negotiate.” Says KDD Analytics President, Dr. Duffy-Deno.

Driven by the need for better insight into vast amounts of customer information in websites, market surveys, company profiles, sales reports, emails and research reports, KDD Analytics (KDD) has been partnering with ai-one to create innovative ways to visualize this data in Tableau dashboards.

When KDD showed us ZIP Pointe© and told us the story of the CEO in the following presentation, we knew he had a winner.


Any CEO or management team that’s been through the M&A process knows how difficult it is to analyze the target’s revenue in the brief and stressed period of due diligence.  ZIP Pointe© provides the insight you would expect from a SOR enterprise solution within the time and cost constraints of M&A.  A CEO can’t afford not to use it.

Developed for CMOs and CSOs on a tight budget trying to meet planning deadlines, KDD’s new SaaS offering, ZIP Pointe© is used to analyze and size geographic markets down to the 6-digit NAICS level.  And with the custom integration of customer data, it can be used to profile customers, estimate market and wallet share, identify specific market segments of high spend potential and generate a list of ZIP codes sorted by opportunity for targeting purposes.

ZIP Pointe© summarizes and enhances US Census Bureau data for over 7 million private sector business sites with paid employees across the US.  This data is enhanced with estimates of revenue and payroll per site and measure(s) of potential spend per site (what companies could spend on software for example).  The data is reformatted and displayed online in an interactive Tableau dashboard.

Integration of customer data in ZIP Pointe© allows for customer base profiling, estimation of market and wallet share, identification of whether the correct segments are being targeted in terms of revenue and potential spend per site and the degree of success in penetrating specific markets.  When used to support M&A due diligence, integration of the target customer base immediately shows how it aligns (or doesn’t) with current customers and expectations.

ZIP Pointe© is offered on an annual subscription basis at a very affordable $1,999 or $2,999 per user, depending on desired capabilities.  Integration of customer data adds a one-time cost, the amount of which depends on whether firmographics need to be appended to the customer file.  In the case of an M&A application, the total cost would likely be $5,000 to $10,000, a steal when acquisition costs are in the millions.  Check out ZIP Pointe© at

KDD provides expertise in predictive analytics and Tableau visualizations, with domain specialization in B2B quantitative marketing analytics.  If you’re looking to attack your growth plan for 2015 backed by powerful marketing analytics, or need analytical support for M&A due diligence, contact Dr. Duffy-Deno at or give me a call and I’ll introduce you.


Personal AI Helps Convert Social CRM for Recruiting

June 26th, 2014

Given the need for more effective content marketing and better quality lead generation, why aren’t the tools better?  Certainly there are lots of applications, SaaS products and services available for all parts of the marketing and sales process.   With BrainBrowser we provide a tool that can understand the content from marketing and match it to bloggers, LinkedIn connections, Twitter followers and find candidates in places you would never look.

Since about one-third of the 7,500+ queries by our testers were using BrainBrowser to search for people, a key objective is to add features to manage the results and integrate them into your workflow.  If you find someone relevant to your work or a potential recruit, you should be able to connect with them right from the list, follow them on Twitter or share lists of candidates with collaborators.

BrainBrowser with Nimble Popup

As a recruiting professional your task is to find the candidates and conversations on the web where conversions will be maximized and get there first.  BrainBrowser does this for you, creating a list of people, companies and sites that match the content of your position and company description.

As a sales professional, you want to use content, either from your marketing department or content you find and create on your own, to engage your network and to identify the people that are talking about and responsible for buying/influencing a purchase.

In our research (using BrainBrowser) we discovered Nimble and a new category of Social CRM vendors with applications driving social selling (check out Gerry Moran’s post for background on content and social selling).  We were immediately hooked and started using Nimble as our company CRM but quickly found it worked well for managing lists of candidates.

Nimble, a new social CRM application, has made integration easy and I’m recommending it to everyone.  All you need to do is sign up for the trial (its only $15 per month if you like it) and install the plug in in your Chrome browser.  You’ll then be able to highlight the name of the person on the list in BrainBrowser, right click, select the Nimble Search and a popup will display the person’s social media pages in LinkedIn, Twitter, Google+ etc.  Click Save and you’ve added them to your Nimble Contacts where you can then view their social media messages, profile and decide whether to connect or follow.   Tag them and you’ve creating a recruiting hot list you can track in Nimble.

Here’s a video clip I tweeted to CEO Jon Ferrara demonstrating how/why we love it.  This was in response to his video clip to Larry Nipon following up on my referral.

Let me know how you like it.  They do a great job but if you have any questions on the difference between CRM and Social CRM, and how we’re using it for recruiting.  Be sure to add @ai_one or @tom_semantic if you tweet about this and sign up to request a login for BrainBrowser.

As of today, there are only 22 slots left for FREE registrations under the Alpha test program.  Participation gets you a year free on the platform.  Email or tweet @tom_semantic to sign up.

Context, Graphs and the Future of Computing

June 20th, 2014

Robert Scoble and Shel Israel’s latest book, Age of Context, is a survey of the contributions across the globe to the forces influencing technology and our lives today.  The five forces are mobile, social media, data, sensors and location.  Scoble calls these the five forces of context and harnessed, they are the future of computing.

Pete Mortensen also addressed context in his brilliant May 2013 article in Fast Company “The Future of Technology Isn’t Mobile, It’s Contextual.”   So why is context so important (and difficult)?  First, context is fundamental to our ability to understand the text we’re reading and the world we live in.  In semantics, there is the meaning of the words in the sentence, the context of the page, chapter, book and prior works or conversations, but also the context the reader’s education and experience add to the understanding.  As a computing problem, this is the domain of text analytics.

Second, if you broaden the discussion as Mortensen does to personal intelligent agents (Siri, Google Now), the bigger challenge is complexity.  Inability to understand context has always made it difficult for computers and people to work together.  People and the language we use to describe our world is complex, not mathematical, You can’t be reduced to a formula or rule set, no matter how much data is crunched. Mortensen argues (and we agree) that the five forces are finally giving computers the foundational information needed to understand “your context” and that context is expressed in four data graphs.  These data graphs are

  • Social (friends, family and colleagues),
  • Interest (likes & purchases),
  • Behavior (what you do & where) and
  • Personal (beliefs & values).

While Google Glass might be the poster child of a contextual UX, ai-one has the technology to power these experiences by extracting Mortensen’s graphs from the volumes of complex data generated by each of us through our use of digital devices and interaction with increasing numbers of sensors known as the Internet of Things (IoT).  The Nathan API is already being used to process and store unstructured text and deliver a representation of that knowledge in the form of a graph.  This approach is being used today in our BrainDocs product for eDiscovery and compliance.

Age of Context by Scoble and IsraelIn Age of Context, ai-one is pleased to be recognized as a new technology addressing the demands of these new types of data.  The data and the applications that use them are no longer stored in silos where only domain experts can access them.  With Nathan the data space learns from the content, delivering a more relevant contextual response to applications in real time with user interfaces that are multi-sensory, human and intuitive.

We provide developers this new capability in a RESTful API. In addition to extracting graphs from user data, they can build biologically inspired intelligent agents they can train and embed in intelligent architectures.   Our new Nathan is enriched with NLP in a new Python middleware that allows us to reach more OEM developers.  Running in the cloud and integrated with big data sources and ecosystems of existing APIs and applications, developers can quickly create and test new applications or add intelligence to old ones.

For end users, the Analyst Toolbox (BrainBrowser and BrainDocs) demonstrates the value proposition of our new form of artificial intelligence and shows developers how Nathan can be used with other technologies to solve language problems.  While we will continue to roll out new features to this SaaS offering for researchers, marketers, government and compliance professionals, the APIs driving the applications will be available to developers.

Mortensen closes, “Within a decade, contextual computing will be the dominant paradigm in technology.”  But how?  That’s where ai-one delivers.  In coming posts we will discuss some of the intelligent architectures built with the Nathan API.

ai-one Contributes to ETH Publication on Knowledge Representation

June 3rd, 2014

We are pleased to announce the availability of the following publication from prestigious ETH University in Zurich.  This book will be a valuable resource to developers, data scientists, search and knowledge management educators and practitioners trying to deal with the massive amounts of information in both public and private data sources.  We are proud to have our contribution to the field acknowledged in this way.

Knowledge Organization and Representation with Digital Technologies  |  ISBN: 978-3-11-031281-2

ai-one was invited to contribute as co-author to a chapter in this technical book.

ETH Publication- Knowledge RepresentationIn the anthology readers will find very different conceptual and technological methods for modeling and digital representation of knowledge for knowledge organizations (universities, research institutes and educational institutions), and companies based on practical examples presented in a synopsis. Both basic models of the organization of knowledge and technical implementations are discussed including their limitations and difficulties in practice.  In particular the areas of knowledge representation and the semantic web are explored. Best practice examples and successful application scenarios provide the reader with a knowledge repository and a guide for the implementation of their own projects. The following topics are covered in the articles:

  •  hypertext-based knowledge management
  • digital optimization of the proven analog technology of the list box
  • innovative knowledge organization using social media
  • search process visualization for digital libraries
  • semantic events and visualization of knowledge
  • ontological mind maps and knowledge maps
  • intelligent semantic knowledge processing systems
  • fundamentals of computer-based knowledge organization and integration

The book also includes coding medical diagnoses, contributions to the automated creation of records management models, business fundamentals of computer-aided knowledge organization and integration, the concept of mega regions to support of search processes and the management of print publications in libraries.

Available in German only at this time.

Wissensorganisation und -repräsentation mit digitalen Technologien  |  ISBN: 978-3-11-031281-2

ai-one war eigeladen worden, als CO-Autor ein Kapitel in diesem Sachbuch beizusteuern.

Im Sammelband werden die sehr unterschiedlichen konzeptionellen und technologischen Verfahren zur Modellierung und digitalen Repräsentation von Wissen in Wissensorganisationen (Hochschulen, Forschungseinrichtungen und Bildungsinstitutionen) sowie in Unternehmen anhand von  praxisorientierten Beispielen in einer Zusammenschau vorgestellt. Dabei werden sowohl grundlegende Modelle der Organisation von Wissen als auch technische Umsetzungsmöglichkeiten sowie deren Grenzen und Schwierigkeiten in der Praxis insbesondere in den Bereichen der Wissensrepräsentation und des Semantic Web ausgelotet. Good practice Beispiele und erfolgreiche Anwendungsszenarien aus der Praxis bieten dem Leser einen Wissensspeicher sowie eine Anleitung zur Realisierung von eigenen Vorhaben. Folgende Themenfelder werden in den Beiträgen behandelt:

  • Hypertextbasiertes Wissensmanagement
  • digitale Optimierung der erprobten analogen Technologie des Zettelkastens
  • innovative Wissensorganisation mittels Social Media
  • Suchprozessvisualisierung für Digitale Bibliotheken
  • semantische Event- und Wissensvisualisierung
  • ontologische Mindmaps und Wissenslandkarten
  • intelligente semantische Wissensverarbeitungssysteme

sowie Grundlagen der computergestützten Wissensorganisation und -integration, das Konzept von Mega-Regionen zur Unterstützung von Suchprozessen und zum Management von Printpublikationen in Bibliotheken, automatisierte Kodierung medizinischer Diagnosen sowie Beiträge zum Records Management zur Modellbildung und Bearbeitung von Geschäftsprozessen.